Search results for "Grundy number"
showing 2 items of 2 documents
On the family of $r$-regular graphs with Grundy number $r+1$
2014
International audience; The Grundy number of a graph $G$, denoted by $\Gamma(G)$, is the largest $k$ such that there exists a partition of $V(G)$, into $k$ independent sets $V_1,\ldots, V_k$ and every vertex of $V_i$ is adjacent to at least one vertex in $V_j$, for every $j < i$. The objects which are studied in this article are families of $r$-regular graphs such that $\Gamma(G) = r + 1$. Using the notion of independent module, a characterization of this family is given for $r=3$. Moreover, we determine classes of graphs in this family, in particular the class of $r$-regular graphs without induced $C_4$, for $r \le 4$. Furthermore, our propositions imply results on partial Grundy number.
On the family ofr-regular graphs with Grundy numberr+1
2014
Abstract The Grundy number of a graph G , denoted by Γ ( G ) , is the largest k such that there exists a partition of V ( G ) , into k independent sets V 1 , … , V k and every vertex of V i is adjacent to at least one vertex in V j , for every j i . The objects which are studied in this article are families of r -regular graphs such that Γ ( G ) = r + 1 . Using the notion of independent module, a characterization of this family is given for r = 3 . Moreover, we determine classes of graphs in this family, in particular, the class of r -regular graphs without induced C 4 , for r ≤ 4 . Furthermore, our propositions imply results on the partial Grundy number.